
CHEMISTRY OF 3,4-BIS-BIPHENYLENE-1,2-DIOXETANE

N. C. Yang and Richard V. Carr

Department of Chemistry, University of Chicago, Chicago, Illinois 60637

(Received in USA 12 October 1972; received in UK for publication 13 November 1972)

The thermal decomposition of 1,2-dioxetane may generate electronically excited carbonyl compounds.¹⁻⁶ The fluorescence of excited carbonyl compounds thus generated has been observed.^{1,6} Wynberg recently reported that admantylideneadmantane peroxide exhibits a remarkable thermal stability (mp 162-3°) and its decomposition is chemiluminescent.⁶ Chemiluminescent reactions usually involve the decomposition of a metastable energy rich intermediate.⁷ The report by Wynberg implies that the thermal decomposition of a dioxetane at elevated temperatures may be a controllable unimolecular chemiluminescent reaction. In view of the low fluorescence efficiency of aliphatic carbonyl compounds ($\emptyset_f = 1.0-4.4 \times 10^{-5}$),⁸ the thermal decomposition of aliphatic 1,2-dioxetanes is not expected to be an efficient chemiluminescent process. Fluorenone fluoresces with an appreciable quantum efficiency even at room temperature ($\emptyset_f = 0.043$ in DMF at 300°K,⁹ $\emptyset_f = 0.12$ in ethanol at 77°K¹⁰), and the decomposition of 3,4-bis-biphenylene-1,2-dioxetanes. Although the compound has been suggested as an intermediate in the photo-oxygenation of bis-fluorenylidene (<u>2</u>), it has not been isolated and characterized.¹¹ In this compound.

5143

Compound <u>1</u> was synthesized from <u>2</u> by the elegant method developed by Story and coworkers.¹² A solution of <u>2</u> (964 mg) in pinacolone (50 ml) was treated with ozone at -40 to -45° until no more ozone was absorbed. The solvent was removed at 0.1 torr below 0°. The product (308 mg) separated as a white solid when the yellow viscous residue was treated with cold trichlorofluoromethane, mp 135° (dec), and it was recrystallized by dissolving in methanol and cooling the solution to -40°. Pure <u>1</u> was isolated as off-white prisms (210 mg), mp 150° (dec); ir (KBr) 1031, 1017 and 1010 cm⁻¹; uv max (ethanol) 305 (ϵ 5100) and 291 nm (ϵ 7800); nmr (CD₂Cl₂) & 6.48-7.80 ppm (m, ArH); anal. (found) C, 86.79 and H, 4.50. The product is not appreciably contaminated with fluorenone as indicated by the lack of absorbance beyond 360 nm [fluorenone, λ_{max} (MeOH-EtOH) 380 nm (ϵ 250)¹⁰].

When a solution of $\underline{1}$ in benzene was refluxed for 4 hr, it was converted to fluorenone which was identified by its mp, ir spectrum, tlc (one spot), and 2,4-DNP derivative. A bluishgreen luminescence was observed during the reflux of the benzene solution, and it was more intense in refluxing chlorobenzene (130°). The chemiluminescence observed was qualitatively similar to the fluorescence of fluorenone. The emission may be intensified by the addition of 9,10-diphenylethynylanthracene (DPEA). An intense yellowish-green emission remained observable for approximately 25 min from a reluxing solution of $\underline{1}$ and DPEA (5 mg each) in chlorobenzene (10 ml). The luminescence efficiency of these systems and the photoluminescence of $\underline{1}$ are being investigated.

Acknowledgement. The authors wish to thank the National Institutes of Health, grant no.

References

(1) K. R. Kopecky and C. Mumford, Can. J. Chem., 47, 709 (1969).

(2) E. H. White, J. Wiecko, and D. Rosewell, <u>J. Amer. Chem. Soc.</u>, <u>91</u>, 5194 (1969); E. H. White, J. Wiecko, and C. C. Wei, <u>ibid.</u>, <u>92</u>, 2167 (1970).

(3) P. D. Bartlett and A. P. Schaap, <u>ibid.</u>, <u>92</u>, <u>3223</u> (1970); A. P. Schaap and P. D. Bartlett, <u>ibid.</u>, <u>92</u>, 6055 (1970); T. Wilson and A. P. Schaap, <u>ibid.</u>, <u>93</u>, 4126 (1971).

(4) S. Mazur and C. S. Foote, <u>ibid.</u>, <u>92</u>, 3225 (1970).

(5) N. J. Turro and P. Lechtken, ibid., 94, 2886 (1972).

(6) J. H. Wieringa, J. Strating, and H. Wynberg, Tetrahedron Letters, 169 (1972).

- (7) M. M. Rauhut, Acct. Chem. Res., 2, 80 (1969); F. McCapra, Quart. Rev., 20, 485 (1966).
- (8) M. O'Sullivan and A. C. Testa, J. Amer. Chem. Soc., 92, 5842 (1970).
- (9) L. A. Singer, Tetrahedron Letters, 921 (1969).
- (10) K. Yosihara and D. R. Kearns, J. Chem. Phys., 45, 1991 (1966).
- (11) W. H. Richardson and V. Hodge, J. Org. Chem., 35, 1216 (1970).
- (12) P. Story, E. A. Whited, and J. A. Alford, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 2143 (1972).